Lecture 6, 10/I0/12

William Holmes

Matrix Algebra

- Matrix / matrix multiplication $A \cdot B$
- Matrix / number multiplication $a \cdot A$
- Matrix / matrix addition and subtraction. $A \pm B$
- Matrix division (maybe on Wed.)

$$
A \cdot \vec{x}=\vec{b} \longrightarrow \vec{x}=A^{-1} \cdot \vec{b}
$$

Recap of Inverse

- Only square matrices have an inverse.
- But, not all square matrices have them.
- A square matrix with no inverse is called singular.
- An invertible matrix is called nonsingular.

Computing the inverse

- Let A be an nxn square matrix.
- Form the augmented matrix $[A \mid \mathbb{I}]$
- Then row reduce to $\quad\left[\mathbb{I} \mid A^{-1}\right]$

Elementary Matrices and the inverse

- An elementary matrix is a matrix that encodes an elementary row operation.

Row Swapping

- Let $E_{S}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$

Similarly

- This matrix swaps the second and third rows.

$$
E_{S}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Row multiplication

- This matrix multiplies the second row by

$$
\text { 'c'. } \quad E_{m}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & c & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
c \cdot a_{21} & c \cdot a_{22} & c \cdot a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Combination of Rows

- This matrix replaces row 2 with $b^{* R I}+$ c*R2. $E=\left[\begin{array}{lll}1 & 0 & 0 \\ b & c & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{lll}1 & 0 & 0 \\ b & c & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=$
$\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ b \cdot a_{11}+c \cdot a_{21} & b \cdot a_{12}+c \cdot a_{22} & b \cdot a_{13}+c \cdot a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$

Application

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
2 & 4 & 5 \\
3 & 1 & 4 \\
-1 & 0 & 3
\end{array}\right] \\
E_{1}=\left[\begin{array}{ccc}
.5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad E_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \\
R_{1} \rightarrow .5 R 1 \quad R_{2} \rightarrow-3 R_{1}+R_{2} \quad R_{3} \rightarrow R_{1}+R_{3}
\end{gathered}
$$

Application Continued

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
2 & 4 & 5 \\
3 & 1 & 4 \\
-1 & 0 & 3
\end{array}\right] \\
E_{1}=\left[\begin{array}{ccc}
.5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad E_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \\
E_{3} \cdot E_{2} \cdot E_{1} \cdot A \sim\left[\begin{array}{lll}
1 & \square & \square \\
0 & \square & \square \\
0 & \square & \square
\end{array}\right]
\end{gathered}
$$

Elementary Matrices and the inverse

- So, successively multiplying by elementary matrices is the same as performing Gaussian Elimination.
- It can thus be used to compute an inverse and to solve a system.

Properties of an inverse matrix.

- Let A and B be nonsingular (ie. invertible). Then $(A \cdot B)^{-1}=B^{-1} \cdot A^{-1}$
- Proof

$$
\begin{aligned}
B^{-1} \cdot A^{-1} \cdot(A \cdot B) & =B^{-1} \cdot\left(A^{-1} \cdot A\right) \cdot B \\
& =B^{-1} \cdot \mathbb{I} \cdot B \\
& =\mathbb{I}
\end{aligned}
$$

Matrix Transpose

$$
\text { Let } A=\left[\begin{array}{|ccc}
a & b & c \\
\hline d & e & f \\
\hline g & h & i
\end{array}\right]
$$

Then we define $A^{T}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right)\left(\begin{array}{l}d \\ e \\ f\end{array}\right)\left[\begin{array}{l}g \\ h \\ i\end{array}\right]$

- Everything is flipped along the diagonal.

Note

- The transpose of a matrix is not the same size as the original.

$$
A=\left[\begin{array}{l}
a \\
c \\
e
\end{array}\right]\left[\begin{array}{l}
b \\
d \\
f
\end{array}\right] \quad A^{T}=\left[\begin{array}{lll}
a & c & e \\
\hline b & d & f
\end{array}\right]
$$

Properties of Transpose

$$
\begin{aligned}
\left(A^{T}\right)^{T} & =A \\
(a \cdot A)^{T} & =a \cdot A^{T} \\
(A+B)^{T} & =A^{T}+B^{T} \\
(A \cdot B)^{T} & =B^{T} \cdot A^{T}
\end{aligned}
$$

- These are direct to show by writing down matrices and performing the operation.

Terminology

- We say a matrix is symmetric if $A^{T}=A$
- Notice that while any matrix can have a transpose, only a square matrix can be symmetric.

Application

- Suppose that in a given year, 30% of married people get divorced and 20\% of single people get married.
- Suppose you start with 10000 people of which 8000 are married and 2000 are single.
- How many people are married at the end of the first year.

Step I

- Define you unknowns.
$x_{m}^{0}=$ Number of married people next year
$x_{s}^{0}=$ Number of single people next year

Step3

- Setup equations

$$
\begin{array}{rc}
x_{m}^{1}=.7 x_{m}^{0}+.2 x_{s}^{0} \\
x_{s}^{1}=.3 x_{m}^{0}+.8 x_{s}^{0}
\end{array} \quad\left[\begin{array}{c}
x_{m}^{1} \\
x_{s}^{1}
\end{array}\right]=\left[\begin{array}{cc}
.7 & .2 \\
.3 & .8
\end{array}\right] \cdot\left[\begin{array}{c}
x_{m}^{0} \\
x_{s}^{0}
\end{array}\right]
$$

Markov Chain

- This is referred to as a "Markov Process".
- The key feature is that what happens next year doesn't depend on what happened this year!
- The problem can be formulated as

$$
\vec{x}^{1}=A \cdot \vec{x}^{0}
$$

What about at year 4?

- How many married / single people are there?

Now
Year I
Year 2
Year 3
Year 4
\vec{x}^{0}

$$
\begin{gathered}
\vec{x}^{1} \\
\vec{x}^{1}=A \cdot \vec{x}^{0}
\end{gathered}
$$

$$
\vec{x}^{3}
$$

$$
\vec{x}^{4}
$$

$$
\vec{x}^{2}=A \cdot \vec{x}^{1}
$$

$$
\vec{x}^{4}=A \cdot \vec{x}^{3}
$$

$$
\vec{x}^{2}=A^{2} \cdot \vec{x}^{0}
$$

$$
\vec{x}^{4}=A^{4} \cdot \vec{x}^{0}
$$

Markov Process

- Multiplication by A advances you forward one year in time. Multiplication by A ' n ' times advances you forward ' n ' years.

Applications

- Markov chains are used to describe:
- Demographics
- Disease transmission
- Marketing effects

